Oskar Perron (1880–1975)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of oskar RNA regulates oskar translation and requires Oskar protein.

The site of oskar RNA and protein localization within the oocyte determines where in the embryo primordial germ cells form and where the abdomen develops. Initiation of oskar RNA localization requires the activity of several genes. We show that ovaries mutant for any of these genes lack Oskar protein. Using various transgenic constructs we have determined that sequences required for oskar RNA l...

متن کامل

Karl Oskar Illmensee (1939?)

Karl Oskar Illmensee studied the cloning [2] and reproduction of fruit flies, mice, and humans [3] in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning [2]) to create early mouse [4] embryos from adult mouse [4] cells, a technique biologists used in later decades to help explain how embryonic cells function during development....

متن کامل

The Strong Perron Integral

In this paper, we study the strong Perron integral, and show that the strong Perron integral is equivalent to the McShane integral.

متن کامل

Multiple Perron-Frobenius operators.

A cycle expansion technique for discrete sums of several PF operators, similar to the one used in the standard classical dynamical zeta-function formalism is constructed. It is shown that the corresponding expansion coefficients show an interesting universal behavior, which illustrates the details of the interference between the particular mappings entering the sum.

متن کامل

Hadamard and Perron JWR

On page 23 of his famous monograph [2], D. V. Anosov writes Every five years or so, if not more often, someone 'discovers' the theorem of Hadamard and Perron proving it either by Hadamard's method or Perron's. I myself have been guilty of this. If (X, d X) and (Y, d Y) are metric spaces and T : X → Y is a map then the Lipschitz constant of T is the quantity lip(T) = sup d Y (T (x 1), T (x 2))

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1982

ISSN: 0022-314X

DOI: 10.1016/0022-314x(82)90063-4